Please read this notice before using the TAIYO YUDEN products.

# REMINDERS

## Product Information in this Catalog

Product information in this catalog is as of October 2021. All of the contents specified herein and production status of the products listed in this catalog are subject to change without notice due to technical improvement of our products, etc. Therefore, please check for the latest information carefully before practical application or use of our products.

Please note that TAIYO YUDEN shall not be in any way responsible for any damages and defects in products or equipment incorporating our products, which are caused under the conditions other than those specified in this catalog or individual product specification sheets.

### Approval of Product Specifications

Please contact TAIYO YUDEN for further details of product specifications as the individual product specification sheets are available. When using our products, please be sure to approve our product specifications or make a written agreement on the product specification with TAIYO YUDEN in advance.

### Pre-Evaluation in the Actual Equipment and Conditions

Please conduct validation and verification of our products in actual conditions of mounting and operating environment before using our products.

#### Safety Design

When using our products for high safety and/or reliability-required equipment or circuits, please fully perform safety and/or reliability evaluation. In addition, please install (i) systems equipped with a protection circuit and a protection device and/or (ii) systems equipped with a redundant circuit or other system to prevent an unsafe status in the event of a single fault for a failsafe design to ensure safety.

#### Intellectual Property Rights

Information contained in this catalog is intended to convey examples of typical performances and/or applications of our products and is not intended to make any warranty with respect to the intellectual property rights or any other related rights of TAIYO YUDEN or any third parties nor grant any license under such rights.

#### Limited Warranty

Please note that the scope of warranty for our products is limited to the delivered our products themselves conforming to the product specifications specified in the individual product specification sheets, and TAIYO YUDEN shall not be in any way responsible for any damages resulting from a failure or defect in our products. Notwithstanding the foregoing, if there is a written agreement (e.g., supply and purchase agreement, quality assurance agreement) signed by TAIYO YUDEN and your company, TAIYO YUDEN will warrant our products in accordance with such agreement, provided, however, that our products shall be used for general-purpose and standard use in the equipment specified in this catalog or the individual product specification sheets.

# TAIYO YUDEN's Official Sales Channel

The contents of this catalog are applicable to our products which are purchased from our sales offices or authorized distributors (hereinafter "TAIYO YUDEN's official sales channel"). Please note that the contents of this catalog are not applicable to our products purchased from any seller other than TAIYO YUDEN's official sales channel.

### Caution for Export

Some of our products listed in this catalog may require specific procedures for export according to "U.S. Export Administration Regulations", "Foreign Exchange and Foreign Trade Control Law" of Japan, and other applicable regulations. Should you have any questions on this matter, please contact our sales staff.

# Limited Application

# 1. Equipment Intended for Use

The products listed in this catalog are intended for general-purpose and standard use in general electronic equipment for consumer (e.g., AV equipment, OA equipment, home electric appliances, office equipment, information and communication equipment including, without limitation, mobile phone, and PC) and other equipment specified in this catalog or the individual product specification sheets, or the equipment approved separately by TAIYO YUDEN.

TAIYO YUDEN has the product series intended for use in the following equipment. Therefore, when using our products for these equipment, please check available applications specified in this catalog or the individual product specification sheets and use the corresponding products.

| Application | Product Series                                                            |                                    | Quality Orada *3             |
|-------------|---------------------------------------------------------------------------|------------------------------------|------------------------------|
| Application | Equipment *1                                                              | Category<br>(Part Number Code *2 ) | Quality Grade <sup>*</sup> 3 |
| Automotive  | Automotive Electronic Equipment<br>(POWERTRAIN, SAFETY)                   | А                                  | 1                            |
| Automotive  | Automotive Electronic Equipment<br>(BODY & CHASSIS, INFOTAINMENT)         | С                                  | 2                            |
| Industrial  | Telecommunications Infrastructure and<br>Industrial Equipment             | В                                  | 2                            |
| Medical     | Medical Devices classified as GHTF Class C<br>(Japan Class III)           | М                                  | 2                            |
| wedical     | Medical Devices classified as GHTF Classes A or B (Japan Classes I or II) | L                                  | 3                            |
| Consumer    | General Electronic Equipment                                              | S                                  | 3                            |

\*Notes: 1. Based on the general specifications required for electronic components for such equipment, which are recognized by TAIYO YUDEN, the use of each product series for the equipment is recommended. Please be sure to contact TAIYO YUDEN before using our products for equipment other than those covered by the product series.
2. On each of our part number, the 2nd code from the left is a code indicating the "Category" as shown in the above table. For details,

Please check the explanatory materials regarding the part numbering system of each of our products.
 Each product series is assigned a "Quality Grade" from 1 to 3 in order of higher quality. Please do not incorporate a product into any equipment with a higher Quality Grade than the Quality Grade of such product without the prior written consent of TAIYO YUDEN.

# 2. Equipment Requiring Inquiry

Please be sure to contact TAIYO YUDEN for further information before using the products listed in this catalog for the following equipment (excluding intended equipment as specified in this catalog or the individual product specification sheets) which may cause loss of human life, bodily injury, serious property damage and/or serious public impact due to a failure or defect of the products and/or malfunction attributed thereto.

(1) Transportation equipment (automotive powertrain control system, train control system, and ship control system, etc.)

(2) Traffic signal equipment

- (3) Disaster prevention equipment, crime prevention equipment
- (4) Medical devices classified as GHTF Class C (Japan Class III)
- (5) Highly public information network equipment, data-processing equipment (telephone exchange, and base station, etc.)
- (6) Any other equipment requiring high levels of quality and/or reliability equal to the equipment listed above

## 3. Equipment Prohibited for Use

Please do not incorporate our products into the following equipment requiring extremely high levels of safety and/or reliability. (1) Aerospace equipment (artificial satellite, rocket, etc.)

- (2) Aviation equipment \*1
- (3) Medical devices classified as GHTF Class D (Japan Class IV), implantable medical devices \*2
- (4) Power generation control equipment (nuclear power, hydroelectric power, thermal power plant control system, etc.)
- (5) Undersea equipment (submarine repeating equipment, etc.)
- (6) Military equipment

(7) Any other equipment requiring extremely high levels of safety and/or reliability equal to the equipment listed above

- \*Notes:1. There is a possibility that our products can be used only for aviation equipment that does not directly affect the safe operation of aircraft (e.g., in-flight entertainment, cabin light, electric seat, cooking equipment) if such use meets requirements specified separately by TAIYO YUDEN. Please be sure to contact TAIYO YUDEN for further information before using our products for such aviation equipment.
  - 2. Implantable medical devices contain not only internal unit which is implanted in a body, but also external unit which is connected to the internal unit.

## 4. Limitation of Liability

Please note that unless you obtain prior written consent of TAIYO YUDEN, TAIYO YUDEN shall not be in any way responsible for any damages incurred by you or third parties arising from use of the products listed in this catalog for any equipment that is not intended for use by TAIYO YUDEN, or any equipment requiring inquiry to TAIYO YUDEN or prohibited for use by TAIYO YUDEN as described above.

Code in front of Series have been extracted from Part number, which describes the segment of products, such as kinds and characteristics.

# Multilayer Metal Power Inductors MCOIL<sup>™</sup> LSCN series for General Electronic Equipment for Consumer

REFLOW PART NUMBER \* Operating Temp.:-40~+125°C(Including self-generated heat) 2 Н 0 S С 2 0 Κ Т R Μ Ν А 1 (1) (2) 3 **(4)** (5) 6  $\overline{7}$ (8) (1)Series Code (1)(2)(3)(4) Multilayer Metal Power Inductor for General Electronic Equipment for Consumer LSCN (3) Type (1) Product Group Code Code С Metal Multilayer L Inductors (2) Category (4) Features, Characteristics Code Recommended equipment Quality Grade Code Standard Power choke Ν General Electronic Equipment S 3 for Consumer ⑤Packaging ②Features Code Feature Code Packaging А L-shape electrode т Taping В L-shape electrode with polarity marking 6Nominal inductance D Bottom electrode with polarity marking F 5-surface electrode Code Nominal inductance [µH] (example) R24 0.24 ③Dimensions (L×W) R47 0.47 Dimensions Code Type(inch)  $(L \times W) [mm]$ 1R0 1.0 1005(0402) 1005  $1.0 \times 0.5$ ※R=Decimal point 1210(0504) 1.25 × 1.05 1210 1412(0505) ⑦Inductance tolerance 1412 1.4 × 1.2 1608 1608(0603) 1.6 × 0.8 Code Inductance tolerance 2012 2012(0805) 2.0×1.25 М ±20% 2016 2016(0806) 2.0×1.6 ⑧Internal code ④Thickness Code Thickness[mm] 0.50 max ΕK EE 0.55 max FK 0.60 max FE 0.65 max ΗK 0.80 max KΚ 1.0 max

# STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY



Bottom electrode with polarity marking



| antity[pcs]   | Standard qu |                     | т           | pe L W              |                     | Turne  |
|---------------|-------------|---------------------|-------------|---------------------|---------------------|--------|
| Embossed tape | Paper tape  | e                   | I           | vv                  | L                   | Туре   |
|               | 10000       | 0.25±0.15           | 0.55 max    | 0.5±0.2             | 1.0±0.2             | 1005EE |
| _             | 10000       | $(0.010 \pm 0.006)$ | (0.022 max) | $(0.020 \pm 0.008)$ | $(0.039 \pm 0.008)$ | (0402) |
|               | 5000        | 0.30±0.2            | 0.50 max    | 1.05±0.1            | 1.25±0.1            | 1210EK |
| —             | 5000        | (0.012±0.008)       | (0.020 max) | $(0.041 \pm 0.004)$ | $(0.049 \pm 0.004)$ | (0504) |
|               | 1000        | $0.50 \pm 0.2$      | 0.65 max    | 1.2±0.2             | 1.4±0.2             | 1412FE |
| —             | 4000        | $(0.02 \pm 0.008)$  | (0.026 max) | $(0.047 \pm 0.008)$ | $(0.055 \pm 0.008)$ | (0505) |
|               | 4000        | 0.3±0.2             | 0.60 max    | 0.8±0.2             | 1.6±0.2             | 1608FK |
| —             | 4000        | $(0.012 \pm 0.008)$ | (0.024 max) | $(0.031 \pm 0.008)$ | $(0.063 \pm 0.008)$ | (0603) |
|               | 1000        | 0.3±0.2             | 0.65 max    | 0.8±0.2             | 1.6±0.2             | 1608FE |
| —             | 4000        | (0.012±0.008)       | (0.026 max) | $(0.031 \pm 0.008)$ | $(0.063 \pm 0.008)$ | (0603) |
|               | 4000        | 0.4±0.2             | 0.80 max    | 0.8±0.2             | 1.6±0.2             | 1608HK |
| —             | 4000        | $(0.016 \pm 0.008)$ | (0.031 max) | $(0.031 \pm 0.008)$ | $(0.063 \pm 0.008)$ | (0603) |
| 3000          |             | 0.3±0.2             | 1.0 max     | 0.8±0.2             | 1.6±0.2             | 1608KK |
| 3000          | -           | $(0.012 \pm 0.008)$ | (0.039 max) | $(0.031 \pm 0.008)$ | $(0.063 \pm 0.008)$ | (0603) |
|               | 4000        | $0.5 \pm 0.3$       | 0.80 max    | $1.25 \pm 0.2$      | 2.0±0.2             | 2012HK |
| —             | 4000        | $(0.02 \pm 0.012)$  | (0.031 max) | $(0.049 \pm 0.008)$ | $(0.079 \pm 0.008)$ | (0805) |
| 2000          |             |                     | 1.0 max     | $1.25 \pm 0.2$      | 2.0±0.2             | 2012KK |
| 3000          | —           | $(0.02 \pm 0.012)$  | (0.039 max) | $(0.049 \pm 0.008)$ | $(0.079 \pm 0.008)$ | (0805) |
|               | 4000        | 0.5±0.3             | 0.65 max    | 1.6±0.2             | 2.0±0.2             | 2016FE |
| _             | 4000        | $(0.02 \pm 0.012)$  | (0.026 max) | $(0.063 \pm 0.008)$ | $(0.079 \pm 0.008)$ | (0806) |

#### PART NUMBER

| <b>01005</b> type |                                    |      |                    |                             |        |                |                        |                        |                        |                          |
|-------------------|------------------------------------|------|--------------------|-----------------------------|--------|----------------|------------------------|------------------------|------------------------|--------------------------|
| New part number   | Old part number<br>(for reference) | EHS  | Nominal inductance | [ μ H] Inductance tolerance |        | sistance<br>Ω] | Rated<br>current(Idc1) | Rated<br>current(Idc2) | Measuring<br>frequency | Thickness<br>[mm] (max.) |
|                   |                                    |      | ιμπ                |                             | (max.) | (typ.)         | [A] (max.)             | [A] (max.)             | [MHz]                  | [mm] (max.)              |
| LSCNB1005EETR10MB | MCEE1005TR10MHN                    | RoHS | 0.10               | ±20%                        | 50     | 41             | 2.0                    | 2.0                    | 1                      | 0.55                     |
| LSCNB1005EETR22MB | MCEE1005TR22MHN                    | RoHS | 0.22               | ±20%                        | 80     | 65             | 1.6                    | 1.6                    | 1                      | 0.55                     |
| LSCNB1005EETR47MB | MCEE1005TR47MHN                    | RoHS | 0.47               | ±20%                        | 140    | 114            | 1.2                    | 1.2                    | 1                      | 0.55                     |
| LSCNB1005EET1R0MB | MCEE1005T1R0MHN                    | RoHS | 1.0                | ±20%                        | 300    | 244            | 1.0                    | 0.8                    | 1                      | 0.55                     |

#### 1210 type

| New part number   | Old part number<br>(for reference) | EHS  | Nominal inductance $[\mu H]$ | Inductance tolerance | _      | sistance<br>Ω] | Rated<br>current(Idc1) | Rated<br>current(Idc2) | Measuring<br>frequency | Thickness<br>[mm] (max.) |
|-------------------|------------------------------------|------|------------------------------|----------------------|--------|----------------|------------------------|------------------------|------------------------|--------------------------|
|                   |                                    |      | ιμπ                          |                      | (max.) | (typ.)         | [A] (max.)             | [A] (max.)             | [MHz]                  | [IIIII] (IIIax.)         |
| LSCNB1210EKTR47MB | MCEK1210TR47MHN                    | RoHS | 0.47                         | ±20%                 | 82     | 70             | 2.3                    | 1.6                    | 1                      | 0.50                     |
| LSCNB1210EKT1R0MB | MCEK1210T1R0MHN                    | RoHS | 1.0                          | ±20%                 | 179    | 157            | 1.5                    | 1.1                    | 1                      | 0.50                     |
| LSCNB1210EKT1R5MB | MCEK1210T1R5MHN                    | RoHS | 1.5                          | ±20%                 | 240    | 200            | 1.2                    | 0.9                    | 1                      | 0.50                     |

#### **0**1412 type

| New part number   | Old part number<br>(for reference) | EHS  | Nominal inductance $[\mu H]$ | Inductance tolerance | DC Res<br>[m |        | Rated<br>current(Idc1) | Rated<br>current(Idc2) | Measuring<br>frequency | Thickness<br>[mm] (max.) |
|-------------------|------------------------------------|------|------------------------------|----------------------|--------------|--------|------------------------|------------------------|------------------------|--------------------------|
|                   |                                    |      | ιμng                         |                      | (max.)       | (typ.) | [A] (max.)             | [A] (max.)             | [MHz]                  | Lining (max.)            |
| LSCND1412FETR33MC | MCFE1412TR33MJB                    | RoHS | 0.33                         | ±20%                 | 32           | 29     | 5.0                    | 3.7                    | 1                      | 0.65                     |
| LSCND1412FETR47MC | MCFE1412TR47MJB                    | RoHS | 0.47                         | ±20%                 | 42           | 39     | 3.0                    | 3.1                    | 1                      | 0.65                     |

#### 🛑 1608 type

| New part number   | Old part number<br>(for reference) | EHS  | Nominal inductance $[\mu H]$ | Inductance tolerance | DC Res<br>[m |        | Rated<br>current(Idc1) | Rated<br>current(Idc2) | Measuring<br>frequency | Thickness<br>[mm] (max.) |
|-------------------|------------------------------------|------|------------------------------|----------------------|--------------|--------|------------------------|------------------------|------------------------|--------------------------|
|                   | (for reference)                    |      | LμΠJ                         |                      | (max.)       | (typ.) | [A] (max.)             | [A] (max.)             | [MHz]                  | [IIIII] (IIIdx./         |
| LSCNA1608FKTR24MA | MCFK1608TR24M                      | RoHS | 0.24                         | ±20%                 | 50           | 40     | 2.3                    | 2.1                    | 1                      | 0.60                     |
| LSCNA1608FKTR47MA | MCFK1608TR47M                      | RoHS | 0.47                         | ±20%                 | 85           | 69     | 1.9                    | 1.6                    | 1                      | 0.60                     |
| LSCNA1608FKT1R0MA | MCFK1608T1R0M                      | RoHS | 1.0                          | ±20%                 | 224          | 182    | 1.5                    | 0.9                    | 1                      | 0.60                     |
| LSCNE1608FETR24MA | MCFE1608TR24MG                     | RoHS | 0.24                         | ±20%                 | 100          | 75     | 2.6                    | 1.5                    | 1                      | 0.65                     |
| LSCNE1608FETR47MA | MCFE1608TR47MG                     | RoHS | 0.47                         | ±20%                 | 150          | 114    | 2.0                    | 1.2                    | 1                      | 0.65                     |
| LSCNE1608FET1R0MA | MCFE1608T1R0MG                     | RoHS | 1.0                          | ±20%                 | 340          | 270    | 1.4                    | 0.8                    | 1                      | 0.65                     |
| LSCNB1608HKTR24MD | MCHK1608TR24MKN                    | RoHS | 0.24                         | ±20%                 | 24           | 20     | 4.3                    | 3.7                    | 1                      | 0.80                     |
| LSCNB1608HKTR47MD | MCHK1608TR47MKN                    | RoHS | 0.47                         | ±20%                 | 43           | 38     | 3.3                    | 2.7                    | 1                      | 0.80                     |
| LSCNB1608HKTR56MD | MCHK1608TR56MKN                    | RoHS | 0.56                         | ±20%                 | 55           | 45     | 2.7                    | 2.6                    | 1                      | 0.80                     |
| LSCNB1608HKT1R0MD | MCHK1608T1R0MKN                    | RoHS | 1.0                          | ±20%                 | 110          | 89     | 2.2                    | 1.6                    | 1                      | 0.80                     |
| LSCNB1608HKT1R5MD | MCHK1608T1R5MKN                    | RoHS | 1.5                          | ±20%                 | 200          | 160    | 1.7                    | 1.3                    | 1                      | 0.80                     |
| LSCNB1608HKT2R2MD | MCHK1608T2R2MKN                    | RoHS | 2.2                          | ±20%                 | 292          | 237    | 1.5                    | 1.2                    | 1                      | 0.80                     |
| LSCNB1608KKTR24MA | MCKK1608TR24M N                    | RoHS | 0.24                         | ±20%                 | 38           | 35     | 2.8                    | 2.6                    | 1                      | 1.00                     |
| LSCNB1608KKTR47MA | MCKK1608TR47M N                    | RoHS | 0.47                         | ±20%                 | 55           | 44     | 2.4                    | 2.0                    | 1                      | 1.00                     |
| LSCNB1608KKT1R0MA | MCKK1608T1R0M N                    | RoHS | 1.0                          | ±20%                 | 123          | 100    | 2.0                    | 1.3                    | 1                      | 1.00                     |

#### **2012** type

| New part number   | Old part number<br>(for reference) | EHS  | Nominal inductance $[\mu H]$ | Inductance tolerance |        | sistance<br>Ω] | Rated<br>current(Idc1) | Rated<br>current(Idc2) | Measuring<br>frequency | Thickness<br>[mm] (max.) |
|-------------------|------------------------------------|------|------------------------------|----------------------|--------|----------------|------------------------|------------------------|------------------------|--------------------------|
|                   | (for reference)                    |      | ιμnj                         |                      | (max.) | (typ.)         | [A] (max.)             | [A] (max.)             | [MHz]                  | [IIIII] (IIIax./         |
| LSCNA2012HKTR24MA | MCHK2012TR24M                      | RoHS | 0.24                         | ±20%                 | 24     | 19             | 4.32                   | 3.60                   | 1                      | 0.80                     |
| LSCNA2012HKTR47MA | MCHK2012TR47M                      | RoHS | 0.47                         | ±20%                 | 36     | 30             | 3.21                   | 3.15                   | 1                      | 0.80                     |
| LSCNA2012HKT1R0MA | MCHK2012T1R0M                      | RoHS | 1.0                          | ±20%                 | 111    | 90             | 2.26                   | 1.47                   | 1                      | 0.80                     |
| LSCNA2012KKTR24MA | MCKK2012TR24M                      | RoHS | 0.24                         | ±20%                 | 25     | 20             | 6.2                    | 4.0                    | 1                      | 1.00                     |
| LSCNA2012KKTR47MA | MCKK2012TR47M                      | RoHS | 0.47                         | ±20%                 | 39     | 32             | 4.5                    | 3.1                    | 1                      | 1.00                     |
| LSCNA2012KKT1R0MA | MCKK2012T1R0M                      | RoHS | 1.0                          | ±20%                 | 90     | 73             | 3.6                    | 2.1                    | 1                      | 1.00                     |
| LSCNE2012HKTR11MD | MCHK2012TR11MKG                    | RoHS | 0.11                         | ±20%                 | 12     | 9.1            | 6.9                    | 5.8                    | 1                      | 0.80                     |
| LSCNE2012HKTR24MD | MCHK2012TR24MKG                    | RoHS | 0.24                         | ±20%                 | 17     | 14             | 6.0                    | 4.8                    | 1                      | 0.80                     |
| LSCNE2012HKTR47MD | MCHK2012TR47MKG                    | RoHS | 0.47                         | ±20%                 | 32     | 26             | 4.8                    | 4.0                    | 1                      | 0.80                     |
| LSCND2012HKTR47MD | MCHK2012TR47MKB                    | RoHS | 0.47                         | ±20%                 | 26     | 21             | 4.8                    | 4.0                    | 1                      | 0.80                     |

#### **0**2016 type

| New part number    | Old part number<br>(for reference) | EHS  | Nominal inductance $[\mu H]$ | Inductance tolerance |        | sistance<br>Ω] | Rated<br>current(Idc1) | Rated<br>current(Idc2) | Measuring<br>frequency | Thickness<br>[mm] (max.) |
|--------------------|------------------------------------|------|------------------------------|----------------------|--------|----------------|------------------------|------------------------|------------------------|--------------------------|
|                    |                                    |      | ιμnj                         |                      | (max.) | (typ.)         | [A] (max.)             | [A] (max.)             | [MHz]                  | [mm] (max./              |
| LSCNE2016FETR47MCB | MCFE2016TR47MJG B                  | R₀HS | 0.47                         | ±20%                 | 45     | 40             | 4.0                    | 3.2                    | 1                      | 0.65                     |
| LSCNE2016FETR68MCB | MCFE2016TR68MJG B                  | R₀HS | 0.68                         | ±20%                 | 60     | 50             | 3.0                    | 2.5                    | 1                      | 0.65                     |
| LSCNE2016FET1R0MCB | MCFE2016T1R0MJG B                  | RoHS | 1.0                          | ±20%                 | 70     | 60             | 2.8                    | 2.3                    | 1                      | 0.65                     |

 $\times$ Idc1 is the DC value at which the initial L value is decreased within 30% by the application of DC bias. (at 20°C)



# Multilayer Metal Power Inductors MCOIL<sup>™</sup> LSCN/LCCN/LBCN/LLCN/LMCN series

# PACKAGING

# ①Minimum Quantity Tape & Reel Packaging

| Turna       |      | Thickness            | Standard Q | uantity [pcs] |
|-------------|------|----------------------|------------|---------------|
| Туре        | Code | mm (inch)            | Paper Tape | Embossed Tape |
| 1005 (0402) | EE   | 0.55 max(0.022 max)  | 10000      | -             |
| 1210 (0504) | EK   | 0.5 max (0.020 max)  | 5000       | _             |
| 1412 (0505) | FE   | 0.65 max (0.026 max) | 4000       | -             |
| 1608 (0603) | FK   | 0.6 max (0.024 max)  | 4000       | -             |
| 1608 (0603) | FE   | 0.65 max (0.026 max) | 4000       | -             |
| 1608 (0603) | НК   | 0.8 max (0.031 max)  | 4000       | -             |
| 1608 (0603) | KK   | 1.0 max (0.039 max)  | -          | 3000          |
| 2012 (0806) | НК   | 0.8 max (0.031 max)  | 4000       | _             |
| 2012 (0805) | KK   | 1.0 max (0.039 max)  | -          | 3000          |
| 2016 (0806) | FE   | 0.65 max (0.026 max) | 4000       | _             |

## (2) Taping material

Card board carrier tape 1005/1210/1412/1608/2012/2016 type



Chip Filled

Embossed Tape 1608/2012 type

Chip





#### **③**Taping Dimensions

 $(0.079 \pm 0.002)$ 

Paper tape (8mm wide)  $\phi$  1.5+0.1/-0 Sprocket hole  $(\phi$  0.059+0.004/-0)  $(\phi$  0.059+0.004/-0)  $(\phi$  0.069±0.004)  $(\phi$  0.059±0.004)  $(\phi$  0.050±0.004)  $(\phi$  0.050±0.004)  $(\phi$  0.050±0.004)

Chip cavity Insertion Pitch Tape Thickness Thickness Туре Code Α в mm(inch) F т 0.55 max 0.8 1.3  $2.0 \pm 0.05$ 0.64max 1005 (0402) EΕ (0.021 max) (0.031) (0.051)  $(0.079 \pm 0.002)$ (0.025max) 0.64max 0.5 max 1.3 1.55  $4.0 \pm 0.1$ 1210 (0504) ΕK (0.020 max) (0.051) (0.061)  $(0.157 \pm 0.004)$ (0.025max) 0.65 max 1.6 1.8  $4.0 \pm 0.1$ 0.72max 1412 (0505) FE (0.063) (0.071)  $(0.157 \pm 0.004)$ (0.026 max) (0.028max) 0.6 max 1.1 1.9  $4.0 \pm 0.1$ 0.72max 1608 (0603) FK (0.024 max) (0.043) (0.075)  $(0.157 \pm 0.004)$ (0.028max) 0.65 max 1.1 1.9  $4.0 \pm 0.1$ 0.72max 1608 (0603) FF (0.026 max) (0.043) (0.075)  $(0.157 \pm 0.004)$ (0.028max) 0.8 max 1.2 2.0  $4.0 \pm 0.1$ 0.9max 1608 (0603) ΗK (0.031 max) (0.047) (0.079)  $(0.157 \pm 0.004)$ (0.035max) 0.8 max 1.65 2.4  $4.0 \pm 0.1$ 0.9max 2012 (0805) ΗK (0.094)  $(0.157 \pm 0.004)$ (0.031 max) (0.065) (0.035max) 0.65 max 1.95 2.3  $4.0 \pm 0.1$ 0.72max 2016 (0806) FE (0.026 max) (0.077) (0.091)  $(0.157 \pm 0.004)$ (0.028max) Unit : mm(inch)



|      | Thickness        | Chip                                                                                           | cavity                                                                                                                                                   | Insertion Pitch                                                                                                                                                                                              | Tape Thi                                                                                                                                                                                                                                                                     | ickness                                                                                                                                                                                                                                                                                                                                     |
|------|------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Code | mm(inch)         | А                                                                                              | В                                                                                                                                                        | F                                                                                                                                                                                                            | К                                                                                                                                                                                                                                                                            | Т                                                                                                                                                                                                                                                                                                                                           |
| ĸĸ   | 1.0 max          | 1.1                                                                                            | 1.95                                                                                                                                                     | 4.0±0.1                                                                                                                                                                                                      | 1.5 max                                                                                                                                                                                                                                                                      | 0.3 max                                                                                                                                                                                                                                                                                                                                     |
|      | (0.039 max)      | (0.043)                                                                                        | (0.077)                                                                                                                                                  | (0.157±0.004)                                                                                                                                                                                                | (0.059 max)                                                                                                                                                                                                                                                                  | (0.012 max)                                                                                                                                                                                                                                                                                                                                 |
| XX   | 1.0 max          | 1.55                                                                                           | 2.35                                                                                                                                                     | $4.0 \pm 0.1$                                                                                                                                                                                                | 1.45 max                                                                                                                                                                                                                                                                     | 0.3 max                                                                                                                                                                                                                                                                                                                                     |
| NN   | (0.039 max)      | (0.061)                                                                                        | (0.093)                                                                                                                                                  | $(0.157 \pm 0.004)$                                                                                                                                                                                          | (0.057 max)                                                                                                                                                                                                                                                                  | (0.012 max)                                                                                                                                                                                                                                                                                                                                 |
|      | Code<br>KK<br>KK | Code         mm(inch)           KK         1.0 max<br>(0.039 max)           KK         1.0 max | Code         mm(inch)         A           KK         1.0 max         1.1           (0.039 max)         (0.043)           KK         1.0 max         1.55 | Code         mm(inch)         A         B           KK         1.0 max         1.1         1.95           (0.039 max)         (0.043)         (0.077)           KK         1.0 max         1.55         2.35 | Code         mm(inch)         A         B         F           KK         1.0 max         1.1         1.95         4.0±0.1           (0.039 max)         (0.043)         (0.077)         (0.157±0.004)           KK         1.0 max         1.55         2.35         4.0±0.1 | Code         mm(inch)         A         B         F         K           KK         1.0 max         1.1         1.95         4.0±0.1         1.5 max           (0.039 max)         (0.043)         (0.077)         (0.157±0.004)         (0.059 max)           KK         1.0 max         1.55         2.35         4.0±0.1         1.45 max |

Unit : mm(inch)





# Multilayer Metal Power Inductors MCOIL<sup>™</sup> LSCN series for General Electronic Equipment for Consumer Multilayer Metal Power Inductors MCOIL<sup>™</sup> LLCN series for Medical Devices classified as GHTF Classes A or B (Japan Classes I or II)

# RELIABILITY DATA

 I. Operating Temperature Range

 Specified Value
 -40~+125°C (Including self-generated heat)

2. Storage Temperature RangeSpecified Value-40~+85°C

| 3. Rated Current |                                                                                                                               |
|------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Specified Value  | Idc1: The decreasing-rate of inductance value is within 30 %<br>Idc2: The temperature of the element is increased within 40°C |
| 4. Impedance     |                                                                                                                               |

Specified Value

| 5. Inductance    |                              |   |                           |
|------------------|------------------------------|---|---------------------------|
| Specified Value  | Refer to each specification. |   |                           |
| Test Methods and | Measuring frequency          | : | 1MHz                      |
| Remarks          | Measuring equipment          | : | E4991 (or its equivalent) |

6. Q Specified Value

| 7. DC Resistance |                                                       |
|------------------|-------------------------------------------------------|
| Specified Value  | Refer to each specification.                          |
| Test Methods and | Measuring equipment: HIOKI RM3545 (or its equivalent) |
| Remarks          | Measuring equipment: HIOKI RM3343 (or its equivalent) |

# 8. Self Resonance Frequency(SRF)

\_

| 9. Resistance to Flo        | exure of Substrate                                                                                                                                                                                                        |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Specified Value             | No mechanical damage.                                                                                                                                                                                                     |
| Test Methods and<br>Remarks | Warp : $2mm$<br>Testing board : glass epoxy-resin substrate<br>Thickness : $0.8mm$<br>Board Warp<br>$H = \frac{20}{R-230}$ Warp<br>$H = \frac{1}{100}$ Warp<br>$H = \frac{1}{100}$ Warp<br>$H = \frac{1}{100}$ (Unit: mm) |

| 10. Solderability           |                                |                                         |
|-----------------------------|--------------------------------|-----------------------------------------|
| Specified Value             | At least 90% of termin         | al electrode is covered by new solder.  |
| Test Methods and<br>Remarks | Solder temperature<br>Duration | : 245±3°C(Sn/3.0Ag/0.5Cu)<br>: 4±1 sec. |



| 11. Resistance to S | oldering                               |   |                                                                                 |  |  |  |  |
|---------------------|----------------------------------------|---|---------------------------------------------------------------------------------|--|--|--|--|
| 0                   | Appearance: No significant abnormality |   |                                                                                 |  |  |  |  |
| Specified Value     | Inductance change: Within ±10%         |   |                                                                                 |  |  |  |  |
|                     | Solder temperature                     | : | 260±5°C                                                                         |  |  |  |  |
|                     | Duration                               | : | 10±0.5 sec.                                                                     |  |  |  |  |
| Test Methods and    | Preheating temperature                 | : | 150 to 180°C                                                                    |  |  |  |  |
| Remarks             | Preheating time                        | : | 3 min.                                                                          |  |  |  |  |
|                     | Flux                                   | : | Immersion into ethanol solution with colophony for 3 to 5 sec.                  |  |  |  |  |
|                     | Recovery                               | : | 2 to 3 hrs of recovery under the standard condition after the test.(See Note 1) |  |  |  |  |

| Specified Value             | Appearance: No significant abnormality |                                          |                              |  |  |  |  |  |  |  |
|-----------------------------|----------------------------------------|------------------------------------------|------------------------------|--|--|--|--|--|--|--|
| Specified value             | Inductance chan                        | Inductance change: Within $\pm 10\%$     |                              |  |  |  |  |  |  |  |
|                             | Conditions for 1                       | cycle                                    |                              |  |  |  |  |  |  |  |
|                             | Step                                   | temperature(°C)                          | time (min.)                  |  |  |  |  |  |  |  |
|                             | 1                                      | -40 +0/-3                                | 30±3                         |  |  |  |  |  |  |  |
| Taat Mathada                | 2                                      | Room temperature                         | 2~3                          |  |  |  |  |  |  |  |
| Test Methods<br>and Remarks | 3                                      | +85 +3/-0                                | 30±3                         |  |  |  |  |  |  |  |
|                             | 4                                      | Room temperature                         | 2~3                          |  |  |  |  |  |  |  |
|                             | Number of cycle                        | s: 100                                   |                              |  |  |  |  |  |  |  |
|                             |                                        | 3 hrs of recovery under the standard cor | dition after the test (See N |  |  |  |  |  |  |  |

| 13. Damp Heat( St | eady state)                                                                                                      |
|-------------------|------------------------------------------------------------------------------------------------------------------|
| Specified Value   | Appearance: No significant abnormality                                                                           |
| Specified value   | Inductance change: Within $\pm 10\%$                                                                             |
|                   | Temperature : 60±2°C                                                                                             |
| Test Methods and  | Humidity : 90 to 95%RH                                                                                           |
| Remarks           | Duration : 500 +24/-0 hrs                                                                                        |
|                   | Recovery : 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note 1) |

| 14. Loading under D | amp Heat            |                                                                                                        |
|---------------------|---------------------|--------------------------------------------------------------------------------------------------------|
|                     | Appearance: No sign | ificant abnormality                                                                                    |
| Specified Value     | Inductance change:  | Within $\pm 10\%$                                                                                      |
|                     | Temperature         | : 60±2℃                                                                                                |
| Test Methods and    | Humidity            | : 90 to 95%RH                                                                                          |
| Remarks             | Applied current     | : Idc2max                                                                                              |
| Remarks             | Duration            | : 500 +24/-0 hrs                                                                                       |
|                     | Recovery            | : 2 to 3 hrs of recovery under the standard condition after the removal from test chamber.(See Note 1) |

| 15. Loading at High | Temperature                                                                                                      |
|---------------------|------------------------------------------------------------------------------------------------------------------|
| Specified Value     | Appearance: No significant abnormality                                                                           |
| Specified value     | Inductance change: Within $\pm 10\%$                                                                             |
|                     | Temperature : 85±2°C                                                                                             |
| Test Methods and    | Applied current : Idc2max                                                                                        |
| Remarks             | Duration : 500 +24/-0 hrs                                                                                        |
|                     | Recovery : 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note 1) |

(Note 1) Measurement shall be made after  $48\pm2$  hrs of recovery under the standard condition.

"standard condition" referred to herein is defined as follows:

5 to 35°C of temperature, 25 to 85% relative humidity.

When there are questions concerning measurement results:

In order to provide correlation data, the test shall be conducted under condition of  $20\pm2^{\circ}$ C of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure. Unless otherwise specified, all the tests are conducted under the "standard condition."



# PRECAUTIONS

| 1. Circuit Design |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Precautions       | <ul> <li>Verification of operating environment, electrical rating and performance</li> <li>1. A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications. As such, any inductors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications.</li> <li>2. When inductors are used in places where dew condensation develops and/or where corrosive gas such as hydrogen sulfide, sulfurous acid, or chlorine exists in the air, characteristic deterioration may occur. Please do not use inductors under such environmental conditions.</li> <li>Operating current (Verification of Rated current)</li> <li>1. The operating current including inrush current for inductors must always be lower than their rated values.</li> <li>2. Do not apply current in excess of the rated value because the inductance may be reduced due to the magnetic saturation effect.</li> <li>Temperature rise</li> <li>Temperature rise of power choke coil depends on the installation condition in end products.</li> <li>Make sure that temperature rise of power choke coils in actual end products is within the specified temperature range.</li> </ul> |

| 2. PCB Design               |                                                    |                                                                                                                    |                                                                                                                                               |                                                                                                                                 |                                                                                                                                                  |                                                                                                                                            |                                                                                                                |                                                                                                                       |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Precautions                 | Who<br>per<br>(1)<br>(2)<br>Patter<br>After<br>pro | formance.<br>The amou<br>Thereford<br>in turn de<br>When mo<br>soldering<br>er inducto<br>cesses (P<br>rds etc.)Fo | s are moun<br>Therefore,<br>ant of sold<br>a, when de<br>etermines to<br>re than or<br>point is se<br>ations (Ind<br>rs have be<br>CB cutting | the follow<br>er applied of<br>signing lan-<br>the amoun<br>ne part is<br>eparated b<br>uctor layo<br>een mount<br>g, board in: | PCB, the si<br>ing items n<br>an affect t<br>d-patterns<br>t of solder<br>jointly sold<br>v solder-re<br>ut on panel<br>ed on the<br>spection, m | ze of land p<br>nust be car<br>he ability o<br>it is neces<br>necessary<br>dered onto<br>esist.<br>lized[ brea<br>boards, c<br>nounting of | refully cons<br>f chips to v<br>sary to cor<br>to form th<br>the same<br>kaway] P(<br>hips can b<br>additional | idered in th<br>withstand mo<br>nsider the ap<br>e fillets.<br>land or pa<br>C boards)<br>be subjecte<br>parts, asset | ne design<br>echanical<br>ppropriate<br>nd, the par<br>ed to mec<br>mbly into | er used (size of fillet) can directly affect inductor<br>of solder land patterns:<br>stresses which may lead to breaking or cracking.<br>e size and configuration of the solder pads which<br>d must be designed so that each component's<br>chanical stresses in subsequent manufacturing<br>the chassis, wave soldering the reflow soldered<br>uctors should be carefully performed to minimize |
|                             | The<br>imp<br>(1)                                  | roper patte<br>Recomme<br>A<br>B<br>C<br>Note: The                                                                 | diagrams a<br>ern designs<br>ended land<br><u>1005</u><br>0.4<br>0.5<br>0.7<br>values in t                                                    | 1210       0.45       0.6       1.15       .he table a                                                                          | show som<br>shown.<br>s for a typ<br>1412<br>0.55<br>0.4<br>1.3<br>pove are re                                                                   | e examples<br>ical chip in<br>1608<br>0.45<br>1.0<br>1.0<br>epresentati                                                                    | ductor land<br>(Unit:<br>2012<br>0.5<br>1.2<br>1.45                                                            | d patterns f<br>mm)<br>2016<br>0.7<br>0.8<br>1.8                                                                      | for PCBs                                                                      | prevent excessive solder amounts. Examples of $A \xrightarrow{B} \xrightarrow{A}$                                                                                                                                                                                                                                                                                                                 |
| Technical<br>considerations | (2)                                                | 2) Examples of good and bad solder<br>Item<br>Mixed mounting of SMD and<br>leaded components                       |                                                                                                                                               |                                                                                                                                 |                                                                                                                                                  | Not recommended Lead wire of component                                                                                                     |                                                                                                                |                                                                                                                       |                                                                               | Recommended                                                                                                                                                                                                                                                                                                                                                                                       |
|                             |                                                    |                                                                                                                    | nent place<br>to the cha                                                                                                                      |                                                                                                                                 |                                                                                                                                                  |                                                                                                                                            | ssis<br>older (for gro                                                                                         |                                                                                                                       |                                                                               | Solder-resist                                                                                                                                                                                                                                                                                                                                                                                     |





| <ul> <li>Adjustment of mounting machine</li> <li>1. Excessive impact load should not be imposed on the inductors when mounting onto the PC boards.</li> </ul> |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 2. The                                                                                                                                                        | e maintenance and inspection of                            | of the mounter should be conducted periodicall                                                                                                                                                                                                                                                                                                                                                             | у.                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                                                                                                               | •                                                          |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                                                                                                                                                               |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                            | I on the inductors, causing damage. To avoid this,                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                                                                                                               |                                                            | 0 1 1                                                                                                                                                                                                                                                                                                                                                                                                      | - Lefthe DO beend often competing for deflection of                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                                                                                                                                               |                                                            | p nozzie should be adjusted to the surface leve                                                                                                                                                                                                                                                                                                                                                            | i of the PG board after correcting for deflection of                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| (2)                                                                                                                                                           |                                                            | be adjusted between 1 and 3N static loads                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                                                                                                                                                               |                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                          | pick-up nozzle, supporting pins or back-up pins sh                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                                                                                                               |                                                            | e used under the PC board. The following diagrams show some typical examples of good pick-up nozzle placement:                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                                                                                                                                                               | Item                                                       | Improper method                                                                                                                                                                                                                                                                                                                                                                                            | Proper method                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                                                               | Single-sided mounting                                      | chipping<br>or cracking                                                                                                                                                                                                                                                                                                                                                                                    | supporting pins -                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                                                                                                                                                               | Double-sided mounting                                      | chipping<br>or cracking                                                                                                                                                                                                                                                                                                                                                                                    | supporting pins                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                                                                                                                                                               | 1. Exc<br>2. The<br>◆Adjus<br>1. If t<br>fol<br>(1)<br>(2) | <ol> <li>Excessive impact load should not</li> <li>The maintenance and inspection of</li> <li>Adjustment of mounting machine</li> <li>If the lower limit of the pick-up following points should be consided in the lower limit of the pick-up board.</li> <li>The pick-up pressure should</li> <li>To reduce the amount of der be used under the PC board.</li> </ol> Item           Single-sided mounting | <ol> <li>Excessive impact load should not be imposed on the inductors when mounting o</li> <li>The maintenance and inspection of the mounter should be conducted periodicall</li> <li>Adjustment of mounting machine         <ol> <li>If the lower limit of the pick-up nozzle is low, too much force may be imposed following points should be considered before lowering the pick-up nozzle:</li></ol></li></ol> |  |  |  |  |  |

| Precautions                 | <ul> <li>Reflow soldering</li> <li>Please contact any of our offices for a reflow soldering, and refer to the recommended condition specified.</li> <li>The product shall be used reflow soldering only.</li> <li>Please do not add any stress to a product until it returns in normal temperature after reflow soldering.</li> </ul> |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | <ul> <li>Lead free soldering</li> <li>When using products with lead free soldering, we request to use them after confirming adhesion, temperature of resistance to solderin heat, soldering etc sufficiently.</li> </ul>                                                                                                              |
|                             | <ul> <li>◆The conditions for Reworking with soldering irons</li> <li>•Put the soldering iron on the land-pattern and don't touch it to the inductor directly.</li> <li>Soldering iron's temperature below 350 °C , Duration 3 seconds or less</li> </ul>                                                                              |
| Technical<br>considerations | <ul> <li>Reflow soldering</li> <li>If products are used beyond the range of the recommended conditions, heat stresses may deform the products, and consequently degrade the reliability of the products.<br/>Recommended reflow condition (Pb free solder)</li></ul>                                                                  |
|                             | Heating Time[sec]                                                                                                                                                                                                                                                                                                                     |
|                             | The allowable number of reflow soldering is 3 times.                                                                                                                                                                                                                                                                                  |

| 5. Cleaning              | 5. Cleaning                                                                                                   |  |  |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|
| Precautions              | <ul> <li>Cleaning conditions</li> <li>Washing by supersonic waves shall be avoided.</li> </ul>                |  |  |  |
| Technical considerations | <ul> <li>Cleaning conditions</li> <li>If washed by supersonic waves, the products might be broken.</li> </ul> |  |  |  |



| 6. Resin coating | and mold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Precautions      | <ol> <li>With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or<br/>while left under normal storage conditions resulting in the deterioration of the inductor's performance.</li> <li>Thermal expansion and thermal shrinkage characteristics of resins may lead to the deterioration of inductors' performance.</li> <li>When a resin hardening temperature is higher than inductor operating temperature, the stresses generated by the excessive heat may<br/>lead to damage in inductors.</li> <li>In prior to use, please make the reliability evaluation with the product mounted in your application set.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7. Handling      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Precautions      | <ul> <li>Breakaway PC boards(splitting along perforations)</li> <li>1. When splitting the PC board after mounting inductors and other components, care is required so as not to give any stresses of deflection or twisting to the board.</li> <li>2. Board separation should not be done manually, but by using the appropriate devices.</li> <li>General handling precautions <ul> <li>Always wear static control bands to protect against ESD.</li> <li>Keep the inductors away from all magnets and magnetic objects.</li> <li>Use non-magnetic tweezers when handling inductors.</li> <li>Any devices used with the inductors ( soldering irons, measuring instruments) should be properly grounded.</li> <li>Keep bare hands and metal products (i.e., metal desk) away from inductor electrodes or conductive areas that lead to chip electrodes.</li> <li>Keep inductors away from items that generate magnetic fields such as speakers or coils.</li> </ul> </li> <li>Mechanical considerations <ul> <li>Be careful not to subject the inductors to excessive mechanical shocks.</li> <li>(1) If inductors are dropped on the floor or a hard surface they should not be used.</li> <li>(2) When handling the mounted boards, be careful that the mounted components do not come in contact with or bump against other boards or components.</li> </ul> </li> </ul> |

| <u> </u>                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Precautions                 | <ul> <li>Storage         To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible.         <ul> <li>Recommended conditions</li> <li>Ambient temperature: 30°C or below</li> <li>Humidity: 30% to 70%</li> <li>The ambient temperature must be kept -5°C to +40°C. Even under ideal storage conditions, solderability of inductor is deteriorated as time passes, so inductors should be used within 6 months from the time of delivery.</li> <li>Inductor should be kept where no chlorine or sulfur exists in the air.</li> </ul> </li> </ul> |  |
| Technical<br>considerations | Storage<br>If the parts are stocked in a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of<br>terminal electrodes and deterioration of taping/packaging materials may take place. For this reason, components should be used within 6<br>months from the time of delivery. If exceeding the above period, please check solderability before using the inductors.                                                                                                                                                                                                                                                                                                            |  |



# **Mouser Electronics**

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

# Taiyo Yuden:

| LSCNA1608FKT1R0MA  | LSCNA1608FKTR24MA | LSCNA1608FKTR47MA  | LSCNA2012HKT1R0MA    |  |  |  |
|--------------------|-------------------|--------------------|----------------------|--|--|--|
| LSCNA2012HKTR24MA  | LSCNA2012HKTR47MA | LSCNA2012KKT1R0MA  | LSCNA2012KKTR24MA    |  |  |  |
| LSCNA2012KKTR47MA  | LSCNB1005EET1R0MB | LSCNB1005EETR10MB  | LSCNB1005EETR22MB    |  |  |  |
| LSCNB1005EETR47MB  | LSCNB1210EKT1R0MB | LSCNB1210EKT1R5MB  | LSCNB1210EKTR47MB    |  |  |  |
| LSCNB1608HKT1R0MD  | LSCNB1608HKT1R5MD | LSCNB1608HKT2R2MD  | LSCNB1608HKTR24MD    |  |  |  |
| LSCNB1608HKTR47MD  | LSCNB1608HKTR56MD | LSCNB1608KKT1R0MA  | LSCNB1608KKTR24MA    |  |  |  |
| LSCNB1608KKTR47MA  | LSCND1412FETR33MC | LSCND1412FETR47MC  | LSCND2012HKTR47MD    |  |  |  |
| LSCNE1608FET1R0MA  | LSCNE1608FETR24MA | LSCNE1608FETR47MA  | LSCNE2012HKTR11MD    |  |  |  |
| LSCNE2012HKTR24MD  | LSCNE2012HKTR47MD | LSCNE2016FET1R0MCE | B LSCNE2016FETR47MCB |  |  |  |
| LSCNE2016FETR68MCB |                   |                    |                      |  |  |  |